Наследственного материала. Геномные мутации. Мутация - это изменение генома. Основные виды и примеры Геномные мутации какие изменения происходят

Мутации - это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора.


Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины - нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.


Хромосомные мутации - изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины - нарушения при кроссинговере. Пример: синдром кошачьего крика.


Геномные мутации - изменение количества хромосом. Причины - нарушения при расхождении хромосом.

  • Полиплоидия - кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия - изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом - 47).

Цитоплазматические мутации - изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений - пестролистность.


Соматические - мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

Приведённые ниже понятия, кроме двух, используются для описания последствий нарушения расположения нуклеотидов в участке ДНК, контролирующем синтез белка. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение первичной структуры полипептида
2) расхождение хромосом
3) изменение функций белка
4) генная мутация
5) кроссинговер

Ответ


Выберите один, наиболее правильный вариант. Полиплоидные организмы возникают в результате
1) геномных мутаций

3) генных мутаций
4) комбинативной изменчивости

Ответ


Установите соответствие между характеристикой изменчивости и ее видом: 1) цитоплазматическая, 2) комбинативная
А) происходит при независимом расхождении хромосом в мейозе
Б) происходит в результате мутаций в ДНК митохондрий
В) возникает в результате перекреста хромосом
Г) проявляется в результате мутаций в ДНК пластид
Д) возникает при случайной встрече гамет

Ответ


Выберите один, наиболее правильный вариант. Синдром Дауна является результатом мутации
1) геномной
2) цитоплазматической
3) хромосомной
4) рецессивной

Ответ


1. Установите соответствие между характеристикой мутации и ее видом: 1) генная, 2) хромосомная, 3) геномная
А) изменение последовательности нуклеотидов в молекуле ДНК
Б) изменение строения хромосом
В) изменение числа хромосом в ядре
Г) полиплоидия
Д) изменение последовательности расположения генов

Ответ


2. Установите соответствие между характеристиками и типами мутаций: 1) генные, 2) геномные, 3) хромосомные. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) делеция участка хромосомы
Б) изменение последовательности нуклеотидов в молекуле ДНК
В) кратное увеличение гаплоидного набора хромосом
Г) анеуплоидия
Д) изменение последовательности генов в хромосоме
Е) выпадение одного нуклеотида

Ответ


Выберите три варианта. Чем характеризуется геномная мутация?
1) изменением нуклеотидной последовательности ДНК
2) утратой одной хромосомы в диплоидном наборе
3) кратным увеличением числа хромосом
4) изменением структуры синтезируемых белков
5) удвоением участка хромосомы
6) изменением числа хромосом в кариотипе

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик геномной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) ограничена нормой реакции признака
2) число хромосом увеличено и кратно гаплоидному
3) появляется добавочная Х-хромосома
4) имеет групповой характер
5) наблюдается потеря Y-хромосомы

Ответ


2. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение расхождения гомологичных хромосом при делении клетки
2) разрушение веретена деления
3) конъюгация гомологичных хромосом
4) изменение числа хромосом
5) увеличение числа нуклеотидов в генах

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) изменение последовательности нуклеотидов в молекуле ДНК
2) кратное увеличение хромосомного набора
3) уменьшение числа хромосом
4) удвоение участка хромосомы
5) нерасхождение гомологичных хромосом

Ответ


Выберите один, наиболее правильный вариант. Рецессивные генные мутации изменяют
1) последовательность этапов индивидуального развития
2) состав триплетов в участке ДНК
3) набор хромосом в соматических клетках
4) строение аутосом

Ответ


Выберите один, наиболее правильный вариант. Цитоплазматическая изменчивость связана с тем, что
1) нарушается мейотическое деление
2) ДНК митохондрий способна мутировать
3) появляются новые аллели в аутосомах
4) образуются гаметы, неспособные к оплодотворению

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) потеря участка хромосомы
2) поворот участка хромосомы на 180 градусов
3) уменьшение числа хромосом в кариотипе
4) появление добавочной Х-хромосомы
5) перенос участка хромосомы на негомологичную хромосому

Ответ


2. Все приведённые ниже признаки, кроме двух, используются для описания хромосомной мутации. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) число хромосом увеличилось на 1-2
2) один нуклеотид в ДНК заменяется на другой
3) участок одной хромосомы перенесен на другую
4) произошло выпадение участка хромосомы
5) участок хромосомы перевернут на 180°

Ответ


3. Все приведенные ниже характеристики, кроме двух, используются для описания хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) умножение участка хромосомы в несколько раз
2) появление дополнительной аутосомы
3) изменение последовательности нуклеотидов
4) потеря концевого участка хромосомы
5) поворот гена в хромосоме на 180 градусов

Ответ


ФОРМИРУЕМ
1) удвоение одного и того же участка хромосомы
2) уменьшение числа хромосом в половых клетках
3) увеличение числа хромосом в соматических клетках

Выберите один, наиболее правильный вариант. К какому виду мутаций относят изменение структуры ДНК в митохондриях
1) геномной
2) хромосомной
3) цитоплазматической
4) комбинативной

Ответ


Выберите один, наиболее правильный вариант. Пестролистность у ночной красавицы и львиного зева определяется изменчивостью
1) комбинативной
2) хромосомной
3) цитоплазматической
4) генетической

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик генной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) обусловлена сочетанием гамет при оплодотворении
2) обусловлена изменением последовательности нуклеотидов в триплете
3) формируется при рекомбинации генов при кроссинговере
4) характеризуется изменениями внутри гена
5) формируется при изменении нуклеотидной последовательности

Ответ


2. Все приведенные ниже характеристики, кроме двух, служат причинами генной мутации. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) конъюгация гомологичных хромосом и обмен генами между ними
2) замена одного нуклеотида в ДНК на другой
3) изменение последовательности соединения нуклеотидов
4) появление в генотипе лишней хромосомы
5) выпадение одного триплета в участке ДНК, кодирующей первичную структуру белка

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) замена пары нуклеотидов
2) возникновение стоп-кодона внутри гена
3) удвоение числа отдельных нуклеотидов в ДНК
4) увеличение числа хромосом
5) потеря участка хромосомы

Ответ


4. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) добавление одного триплета в ДНК
2) увеличение числа аутосом
3) изменение последовательности нуклеотидов в ДНК
4) потеря отдельных нуклеотидов в ДНК
5) кратное увеличение числа хромосом

Ответ


5. Все приведённые ниже характеристики, кроме двух, типичны для генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) возникновение полиплоидных форм
2) случайное удвоение нуклеотидов в гене
3) потеря одного триплета в процессе репликации
4) образование новых аллелей одного гена
5) нарушение расхождения гомологичных хромосом в мейозе

Ответ


ФОРМИРУЕМ 6:
1) осуществляется перенос участка одной хромосомы на другую
2) возникает в процессе репликации ДНК
3) происходит выпадение участка хромосомы

Выберите один, наиболее правильный вариант. Полиплоидные сорта пшеницы - это результат изменчивости
1) хромосомной
2) модификационной
3) генной
4) геномной

Ответ


Выберите один, наиболее правильный вариант. Получение селекционерами сортов полиплоидной пшеницы возможно благодаря мутации
1) цитоплазматической
2) генной
3) хромосомной
4) геномной

Ответ


Установите соответствие между характеристиками и мутациями: 1) геномная, 2) хромосомная. Запишите цифры 1 и 2 в правильном порядке.
А) кратное увеличение числа хромосом
Б) поворот участка хромосомы на 180 градусов
В) обмен участками негомологичных хромосом
Г) выпадение центрального участка хромосомы
Д) удвоение участка хромосомы
Е) некратное изменение числа хромосом

Ответ


Выберите один, наиболее правильный вариант. Появление разных аллелей одного гена происходит в результате
1) непрямого деления клетки
2) модификационной изменчивости
3) мутационного процесса
4) комбинативной изменчивости

Ответ


Все перечисленные ниже термины, кроме двух, используются при классификации мутаций по изменению генетического материала. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) геномные
2) генеративные
3) хромосомные
4) спонтанные
5) генные

Ответ


Установите соответствие между типами мутаций и их характеристиками и примерами: 1) геномные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) утеря или появление лишних хромосом в результате нарушения мейоза
Б) приводят к нарушению функционирования гена
В) примером является полиплоидия у простейших и растений
Г) удвоение или потеря участка хромосомы
Д) ярким примером является синдром Дауна

Ответ


Установите соответствие между категориями наследственных болезней и их примерами: 1) генные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гемофилия
Б) альбинизм
В) дальтонизм
Г) синдром «кошачьего крика»
Д) фенилкетонурия

Ответ


Найдите три ошибки в приведённом тексте и укажите номера предложений с ошибками. (1) Мутации – это случайно возникшие стойкие изменения генотипа. (2) Генные мутации – это результат «ошибок», возникающих в процессе удвоения молекул ДНК. (3) Геномными называют мутации, которые ведут к изменению структуры хромосом. (4) Многие культурные растения являются полиплоидами. (5) Полиплоидные клетки содержат одну–три лишние хромосомы. (6) Полиплоидные растения характеризуются более мощным ростом и крупными размерами. (7) Полиплоидию широко используют как в селекции растений, так и в селекции животных.

Ответ


Проанализируйте таблицу «Виды изменчивости». Для каждой ячейки, обозначенной буквой, выберите соответствующее понятие или соответствующий пример из предложенного списка.
1) соматические
2) генные
3) замена одного нуклеотида на другой
4) удвоение гена в участке хромосомы
5) добавление или выпадение нуклеотидов
6) гемофилия
7) дальтонизм
8) трисомия в хромосомном наборе

Ответ

© Д.В.Поздняков, 2009-2019

    По характеру проявления в гетерозиготном состоянии доминантные (проявляются в гетерозиготном состоянии) и рецессивные (проявляются только в гомозиготном состоянии).

    В зависимости от причины спонтанные (без видимых причин) и индуцированные (вызванные направленным действием какого-то фактора).

    В зависимости от локализации в клетке ядерные и цитоплазматические .

    По отношению к возможности наследования генеративные (в половой клетке) и соматические (возникшие в соматической телесной клетке). Соматические мутации у видов, размножающихся половым способом, по наследству не передаются. Но для данного индивида они не безразличны (например, родимые пятна, пятна на радужке, раковая опухоль).

    Функциональная (в зависимости от исхода) полезные, вредные (в том числе летальные) и нейтральные (безразличные) .

    По характеру изменения генома генные (изменение структуры гена), хромосомные (изменение строения хромосом) и геномные (изменение числа хромосом).

Генные мутации

В основе генных мутаций лежит изменение в строении молекулы ДНК. Все они могут быть объединены в три группы.

    Замена одних азотистых оснований на другие. Например, при дезаминировании (цитозин превращается в тимин) или при ошибочном включении нуклеотида в процессе репликации ДНК.

    Сдвиг рамки считывания – в результате выпадения или вставки какого-то нуклеотида в синтезируемую цепь.

ААА ЦГТ ААЦ фен – ала – лей

ААА АЦГ ТАА фен – цис – иле

кодогенная цепь ДНК полипептид

    Изменение порядка нуклеотидов в пределах гена (при повороте на 180 0 участка цепи ДНК).

Хромосомные мутации

В основе хромосомных мутаций лежат изменения в строении хромосом. Они подразделяются на внутри- и межхромосомные .

    Внутрихромосомные:

а) дефишенси – отрыв концевого участка хромосомы;

б) делеция выпадение срединного участка хромосомы;

в) дупликация – удвоение участка хромосомы;

г ) инверсия – поворот участка хромосомы на 180 о. Инверсия может быть перицентрической (захватывает центромеру) и парацентрической (в пределах одного какого-то плеча).

    Межхромосомные:

а) транслокация – в основе лежит отрыв участка одной хромосомы и присоединение его к другой хромосоме. Разновидности транслокаций: реципрокная (взаимный обмен плечами) и робертсоновская – центрическое разделение или слияние отдельных хромосом.

Предполагают, что в процессе превращения обезьяны (шимпанзе) в человека имело место слияние двух акроцентрических хромосом в одну метацентрическую.

б) транспозиция – перемещение небольших участков генетического материала в пределах как одной хромосомы, так и всего кариотипа.

Геномные мутации

В основе лежит изменение числа хромосом. Различают два вида таких мутаций:

    полиплоидия - увеличение числа хромосом на величину, кратную гаплоидному набору;

    анеуплоидия – увеличение числа хромосом на величину, не кратную гаплоидному набору. В случае трисомии имеется одна лишняя хромосома (набор 2 n + 1 ), при моносомии одна хромосома отсутствует (набор 2 n – 1 ), при нулисомии отсутствует целиком хромосомная пара (2 n – 2 ).

Полиплоидия широко распространена в растительном мире. Так, существует три вида пшеницы (2 n , 4 n , 6 n ), где n = 7 . Хризантемы имеют наборы от 2 n до 22 n (n = 9 ). Аналогичные примеры можно найти у всех растений, как дикорастущих, так и культивируемых. Поэтому считается, что эволюция растений шла по пути полиплоидизации. Полиплоидия широко используется в селекционной работе (у полиплоидных растений крупнее плоды, больше семян).

В животном мире полиплоидия – явление редкое. Полиплоидные организмы обнаружены у инфузорий, рыб.

У человека установлено рождение триплоидов, однако они нежизнеспособны (существуют от нескольких минут до нескольких часов).

Геномные и хромосомные мутации у человека лежат в основе группы заболеваний, которые были названы хромосомными болезнями.

Изменения геномной организации

Рассмотренные выше механизмы рекомбинации наследственного материала (кроссинговер, расхождение гомологичных хромосом и независимое поведение негомологичных хромосом в анафазе I мейоза, оплодотворение) при закономерном их течении обусловливают комбинативную изменчивость, но не изменяют общей структуры генома как видовой характеристики. Эволюционно сложившаяся у данного вида сбалансированность по дозам отдельных генов, распределение этих генов по группам сцепления остаются стабильной характеристикой генома каждого вида. Однако как на генном и хромосомном уровнях организации наследственного материала, так и на геномном уровне он способен приобретать мутационные изменения. Эти изменения могут использоваться как эволюционный материал. При этом ускоренные темпы эволюционного процесса, наблюдаемые на отдельных этапах исторического развития, как правило, бывают обусловлены не столько накоплением генных мутаций, сколько существенными изменениями структуры именно всего генома. К последним относятся изменения дозового соотношения различных генов и изменение состава групп сцепления внутри генома.

Причиной структурных изменений генома может быть нарушение тех процессов, которые в норме обеспечивают его устойчивость, в первую очередь процессов, протекающих в мейозе.

Так, нарушение кроссинговера, приводящее к обмену неравноценными участками ДНК между хроматидами, может привести к утрате или удвоению определенной нуклеотидной последовательности в них. Если это затрагивает структуру отдельного гена, то возможно возникновение генной мутации с изменением количества нуклеотидов в нем (см. разд. 3.4.2.3). Если при неравноценном обмене затронут участок хроматиды, содержащий несколько генов, изменяется доза этих генов в геноме. Он либо лишается каких-то генов (деления), либо эти гены оказываются в геноме в двойном количестве (дупликапия). Изменение дозового соотношения отдельных генов наблюдается также при разных видах хромосомных перестроек, не обязательно связанных с неравноценным кроссинговером (см. разд. 3.5.3.3).

Нарушение расхождения бивалентов в анафазе I мейоза является причиной изменения количества хромосом в гаплоидном наборе гамет. Нерасхождение отдельного бивалента приводит к появлению одной гаметы, лишенной данной хромосомы, и другой, имеющей эту группу сцепления в двойном количестве (рис. 3.76). Оплодотворение таких гамет нормальными половыми клетками приводит к появлению особей, в кариотипе которых изменено общее число хромосом за счет уменьшения (моносомия) или увеличения (трисомия) числа отдельных хромосом. Нарушения структуры генома, заключающиеся в изменении количества отдельных хромосом, называют анэуплоидией.



Рис. 3.76. Нарушение расхождения отдельных бивалентов (1 , 2, 3 ) в мейозе

как причина возникновения анэуплоидий:

А - метафаза 1 мейоза; Б - образование аномальных гамет в результате нарушения расхождения 3-го бивалента в анафазе I мейоза; В - оплодотворение аномальных гамет нормальными гаметами другого пола; Г - образование зигот с анэуплоидным кариотипом (моносомия или трисомия по 3-й хромосоме, соответственно сверху и снизу)

В том случае, если в целом повреждается механизм распределения гомологичных хромосом между полюсами веретена (что наблюдается при его разрушении), клетка остается неразделившейся. Во второе деление мейоза она вступает не гаплоидной, а диплоидной. Из нее образуются диплоидные гаметы. Оплодотворение таких гамет приводит к образованию триплоидных организмов. Увеличение в кариотипе зиготы числа наборов хромосом называют полиплоидией.

Такие структурные изменения наследственного материала довольно часто встречаются в природе у растений, что обеспечивает у них относительно быстрые темпы видообразования. Полиплоидизацию путем искусственного разрушения веретена деления с помощью колхицина широко применяют в селекции при выведении новых сортов растений.

Структурные изменения генома могут выражаться в ином распределении генов по группам сцепления. Когда отдельные хромосомы соединяются по типу робертсоновской транслокации или, наоборот, из одной хромосомы образуются две самостоятельные, это ведет к изменению числа групп сцепления в геноме (см. разд. 3.5.3.3). При реципрокных транслокациях между негомологичными хромосомами или при инверсиях изменяется место положения отдельных генов, что нередко сказывается на характере их функционирования (эффект положения ).

Любые мутационные изменения в наследственном материале гамет -генеративные мутации - становятся достоянием следующего поколения, если такие гаметы участвуют в оплодотворении. Поэтому отклонения в течении митоза или мейоза в клетках-предшественницах гамет имеют большое эволюционное значение. Если же мутации любого ранга (генные, хромосомные или геномные) возникают в соматических клетках - соматические мутации - они передаются только потомкам этих клеток, т.е. не выходят за пределы данного организма. Исключение составляют соматические мутации, возникшие в клетках органов вегетативного размножения, от которых они передаются новому поколению организмов. Одной из причин соматических мутаций являются патологические митозы. При нарушении нормального течения митоза (нерасхождение хроматид отдельных хромосом, многополюсные митозы и т.д.) дочерние клетки получают аномальную наследственную программу и их дальнейшее развитие отклоняется от нормы. Патологические митозы часто наблюдаются в клетках злокачественных опухолей.

Таким образом, несмотря на существование механизмов, обеспечивающих стабильность структуры генома, на этом уровне организации наследственного материала могут появляться эволюционно значимые изменения. Они способны обеспечить достаточно резкий скачок в ходе исторического развития живой природы.

Как у большинства видов, наследственная программа развития, записанная в молекулах ДНК с помощью универсального триплетного кода, организована у человека главным образом в его кариотипе. Хромосомный набор вида Homo sapiens состоит из 23 пар хромосом, содержащих 30-40 тыс. генов. Изучение структуры кариотипа и отдельных хромосом с использованием методик дифференциального (избирательного) окрашивания показало, что характер распределения красителя в разных хромосомах сходен у человека и человекообразных обезьян - шимпанзе и гориллы, имеющих 24 пары хромосом. Это сходство позволило сделать вывод, что одна из крупных хромосом человеческого кариотипа, очевидно, появилась в результате слияния двух акроцентрических хромосом обезьяноподобного предка (см. разд. 3.5.3.3).

Изучение процессов мутагенеза обнаружило, что отдельные гены человека могут изменять свою структуру с частотой, соизмеримой с таковой у других живых организмов (10 -5 -10 -6 на один ген на поколение). Правда, в силу социальности человек создает в ходе своей деятельности новую среду с более высокими дозами и более широким спектром мутагенов, что не может не сказываться на интенсивности мутационного процесса в наследственном материале не только человечества, но и других видов живых организмов.

Из многочисленных мутаций гемоглобина большинство достаточно редки и лишь немногие из них встречаются чаще других, например HbS, HbC, НЬЕ. Большая часть вариантов гемоглобина (около 350) различается единичными аминокислотными заменами, причиной которых являются генные мутации, связанные с заменой оснований в нуклеотидных последовательностях α- или β-глобинового семейства. Многие аминокислотные замены существенно не влияют на функцию гемоглобина и не приводят к патологическим проявлениям. Как правило, это замены в обращенных наружу участках полипептидных цепей тетрамера.

Замены аминокислот, нарушающие нормальную спиральную структуру цепей, часто вызывают неустойчивость гемоглобина. Замена в участках, которыми α- и β-цепи контактируют друг с другом, влияют на сродство гемоглобина к кислороду. Нарушения функций гемоглобина, возникающие в результате таких изменений структуры α- и β-глобиновых генов, ведут к появлению заболеваний, которые можно разделить на четыре основные группы.

1. Гемолитические анемии. Проявляются в распаде эритроцитов, зависящем от неустойчивости гемоглобина (описано около 100 вариантов нестабильных гемоглобинов с мутациями в гене β-цепи).

2. Метгемоглобинемии. Обусловлены ускоренным окислением двухвалентного железа до трехвалентного и образованием гемоглобина М (известны пять таких мутаций в генах α- и β-цепей, состоящих в замене одного основания).

3. Эритроцитоз. Заключается в образовании большего, чем обычно, количества эритроцитов, что обусловлено повышенным сродством гемоглобина к кислороду, который с трудом высвобождается в тканях (таких мутаций известно около 30).

4. Серповидно-клеточная анемия. Заключается в замене гемоглобина НЬА на HbS, который отличается растворимостью и кристаллизацией в условиях гипоксии, что приводит к изменению формы эритроцитов, и проявляется фенотипическим многообразием симптомов (см. рис. 3.21).

Заболевания первых трех групп наследуются по доминантному типу, так что гетерозиготы по мутантному гену страдают нарушением здоровья. Наследование серповидно-клеточной анемии при обычных условиях осуществляется по рецессивному типу, но в условиях сильной гипоксии, например при нахождении на высоте свыше 3000 м над уровнем моря гетерозиготы НbА HbS также страдают анемией.

Описанные мутантные формы гемоглобина возникают в результате изменений структуры генов по типу замены оснований. Мутации иного характера приводят к появлению аллелей глобинов, обусловливающих другие виды патологии. Так, нарушение процесса рекомбинации между аллельными генами (неравноценный кроссинговер) приводит к изменению числа нуклеотидов в них. Следствием этого может быть сдвиг рамки считывания. Нередким результатом таких структурных изменений генов является подавление синтеза той или иной цепи гемоглобина, приводящее к развитию патологических состояний, известных под общим названием талассемии.

Деления одного нуклеотида в 139-м триплете α-глобинового гена, состоящего из 141 триплета, приводит к сдвигу рамки считывания и прочитыванию в новой рамке терминирующего 142-го кодона. При этом (α-глобиновая цепь удлиняется на пять дополнительных аминокислот. Такой особенностью α-цепей характеризуется гемоглобин Vayne. Когда деления располагается ближе к 5"-концу, активный продукт не синтезируется и развиваются различные формы α-, β- и γ-талассемий.

Некоторые варианты гемоглобинов возникают в результате дупли-каций. Так, гемоглобин Grady несет дупликацию 116-118 аминокислотных остатков в γ-цепи. В гемоглобине Cranston удлинение р-цепи до 158 аминокислотных остатков является результатом дупликации AG-последовательности после 144-го триплета и последующего сдвига рамки с пропитыванием терминального кодона.

Описанное выше свидетельствует о том, что различные отклонения в структуре ДНК глобиновых генов приводят к замене аминокислот или удлинению полипептидных цепей. Это является причиной образования многих вариантов гемоглобина, которые определяют развитие у человека заболеваний, наследующихся в ряду поколений.

Не меньший интерес представляют механизмы развития различных заболеваний человека, в основе которых лежат мутации генов, приводящие к синтезу белков-ферментов со сниженной активностью или к его подавлению. Это нарушает течение процессов, катализируемых данными ферментами в клетках организма. Примером наследственно детерминированных повреждений метаболизма в организме человека служит фенилкетонурия, развивающаяся вследствие нарушения процессов обмена аминокислоты фенилаланина и накопления в организме токсических промежуточных продуктов.

Рис. 4.1. Краткая схема обмена фенилаланина:

А - фермент фенилаланингидроксилаза, наследственный дефект которого приводит к развитию фенилкетонурии

При дефекте фермента фенилаланингидроксилазы фенилаланин не превращается в тирозин (рис. 4.1) и накапливается в крови больных в больших концентрациях (до 0,5-0,6 г/л вместо 0,003- 0,04 г/л в норме). Это приводит к частичному превращению фенилаланина в фенилуксусную и фенилмолочную кислоты, накопление которых наряду с повышенной концентрацией самого фенилаланина оказывает токсическое действие на мозг ребенка. В результате у детей наблюдается различная степень дефекта умственного развития. Нарушение метаболизма фенилаланина сопровождается также нарушением синтеза пигмента меланина, поэтому у больных наблюдается слабая пигментация волос и радужки глаз. Кроме того, высокая концентрация фенилаланина оказывает ингибирующее влияние на ряд ферментных систем, участвующих в превращении других аминокислот: у больных развивается судорожный синдром, нарастает отставание интеллектуального развития. Наследование фенилкетонурии осуществляется по рецессивному типу.

Таким образом, рассмотренные выше примеры демонстрируют весь спектр действия молекулярно-генетических механизмов, обеспечивающих образование в человеческом организме белков как нормально функционирующих, так и обусловливающих развитие различных патологических состояний. Из сказанного по поводу гемоглобина следует, что, во-первых, образование главного функционального белка эритроцитов находится под генным контролем, во-вторых, формирование тетрамерной формы этого белка, с которой связана его физиологическая активность, требует взаимодействия неаллельных генов α- и β-глобинов.

Специфический контроль небелковой части молекулы гемоглобина также имеет место и осуществляется независимо, через гены ферментов, необходимых для синтеза гема. Особенности проявления патологических признаков у носителей мутантных аллелей свидетельствуют о существовании определенных отношений между ними и нормальными аллелями. Так, аллель серповидно-клеточности в сочетании с нормальным аллелем (3-глобина (НbА HbS) проявляет себя в обычных условиях как рецессивный. Так же ведет себя мутантный аллель гена, детерминирующего синтез фермента фенилаланингидроксилазы. Проявлением взаимодействия между мутантным и нормальным аллелями по типу доминирования последнего является формирование в организме белка с нормальными свойствами у гетерозигот. Отсутствие нормального аллеля в генотипе организма, гомозиготного по мутантному аллелю, приводит к развитию патологического состояния, обусловленного нарушением функциональной активности соответствующего белка.

Особую группу наследственно обусловленных патологических состояний у человека представляют заболевания, причиной которых являются мутации митохондриальной ДНК (мгДНК).

Биосинтез митохондриальных белков находится под контролем двух генетических систем: ядерных и митохондриальных генов. Большая часть белков кодируется ядерной ДНК, синтезируется в цитоплазме, а затем транспортируется в митохондрии. Наряду с этим в кольцевой молекуле ДНК органеллы имеются гены, которые отвечают за собственный синтез белков, а также участвующих в нем тРНК и рРНК. В ядерном геноме имеется значительное количество генов, обеспечивающих функционирование митохондриальной ДНК. Предполагают, что мутации некоторых ядерных генов приводят к делениям значительных участков ДНК митохондрии. В результате нарушается синтез собственных белков, к числу которых относятся и ферменты дыхательных цепей, нарушается дыхательная функция митохондрии.

У человека описано более 100 заболеваний, причиной которых являются изменения в структуре мтДНК (см. 6.4.1.4).

Нередко хромосомные перестройки появляются в результате воздействия на клетки внешних факторов. К таким факторам относится, например, ионизирующее излучение, вызывающее разрывы хромосом и последующие изменения их структуры. У человека описаны также случаи наследственно обусловленной неустойчивости хромосом, их сверхчувствительности к действию агентов различной природы, приводящих к хромосомным разрывам. Это наблюдается при анемии Фанкони, синдроме Блума, атаксии-телеангиэктазии, пигментной ксеродерме. Так, при пигментной ксеродерме высокая чувствительность к ультрафиолетовому свету, сопровождающаяся повышенной ломкостью хромосом, связана с наследственно обусловленным нарушением репарации ДНК.

Изменение числа хромосом, как правило, является результатом нарушения нормального течения клеточных делений, что приводит к образованию анэуплоидных и полиплоидных соматических клеток или гамет с аномальным числом хромосом.

Повреждения механизмов обеспечения наследственности, действующих на клеточном уровне, в масштабе организма приводят к разным результатам. Так, мутации в соматических клетках организма (соматические мутации) могут приводить к различным заболеваниям особи, однако без передачи их потомству при половом размножении. Нарушения наследственной программы в половых клетках (генеративные мутации), не Проявляясь в фенотипе данного организма, ведут к появлению мутантного потомства. Следовательно, точное воспроизведение определенных наследственных характеристик в ряду поколений клеток организма способствует поддержанию здоровья данной особи. Залогом появления здорового в наследственном отношении потомства является в первую очередь сбалансированность генома родительских гамет, содержащего благоприятные аллели генов. При наличии в геноме гаметы одного из родителей «неблагоприятных» аллелей генов их действие может снижаться в результате взаимодействия с нормальными аллелями другого родителя.

Геномными называют мутации, приводящие к изменению числа хромосом в кариотипе.

Типы геномных мутаций:

1) Полиплодия – увеличение числа хромосом кратное гаплоидному. Бывает мейотическая и соматическая. При автополиплодии – повторен один и тот же геном, при аллоплоидии – два и более разных генома в одной клетке.

2) Гаплоидия – уменьшение числа хромосом до гаплоидного набора.

3) Анеуплоидия – изменение числа лишь отдельных хромосом.

Анеуплоидия, или гетероплоидия, возникает вследствие изменения числа хромосом, не кратного гаплоидному набору. В результате нерасхождения хромосом при гаметогенезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготы 2n+1, или трисомики, по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приведет к образованию зиготы 2n-1, или моносомика, по какой – либо из хромосом. Часто у животных и человека лишняя хромосома обуславливает депрессию развития и летальность. Например, лишняя Х – хромосома или 21 – я хромосома у человека обуславливает тяжелые аномалии. АНЕУПЛОИДИЯ (от греч. an - отрицательная частица, eu - хорошо, вполне, - ploos - кратный и eidos - вид), гетероплоидия, явление, при котором клетки организма содержат изменённое число хромосом, не кратное гаплоидному набору. Отсутствие в хромосомном наборе диплоида одной хромосомы называют моносомией, а двух гомологичных хромосом - нуллисомией; наличие дополнительной гомологичной хромосомы называют трисомией. Организмы с такими изменениями числа хромосом называют соответственно моносомиками, нуллисомиками и трисомиками. Основной механизм возникновения анеуплоидии - нерасхождение и потери отдельных хромосом в митозе и мейозе. Вследствие нарушения баланса хромосом анеуплоидия приводит к понижению жизнеспособности и нередко к гибели анеуплоидов, особенно у животных (анеуплоидия лежит в основе ряда хромосомных болезней). В генетическом анализе с помощью анеуплоидии (скрещивая мутантов с анеуплоидами по определенным хромосомам) определяют, в какой группе сцепления находится исследуемый ген.

Анеуплоидия (гетерополиплоидия) – это изменение числа хромосом в клетках, некратное основному хромосомному числу. Различают несколько типов анеуплоидии. При моносомии утрачивается одна из хромосом диплоидного набора (2n – 1). При полисомии к кариотипу добавляется одна или несколько хромосом. Частным случаем полисомии является трисомия (2n + 1), когда вместо двух гомологов их становится три. При нуллисомии отсутствуют оба гомолога какой-либо пары хромосом (2n – 2).

У человека анеуплоидия приводит к развитию тяжелых наследственных заболеваний. Часть из них связана с изменением числа половых хромосом (см. главу 17). Однако существуют и другие заболевания:

– Трисомия по 21-ой хромосоме (кариотип 47, +21 ); синдром Дауна; частота среди новорожденных – 1:700. Замедленное физическое и умственное развитие, широкое расстояние между ноздрями, широкая переносица, развитие складки века (эпикант), полуоткрытый рот. В половине случаев встречаются нарушения в строении сердца и кровеносных сосудов. Обычно понижен иммунитет. Средняя продолжительность жизни – 9-15 лет.

– Трисомия по 13-ой хромосоме (кариотип 47, +13 ); синдром Патау. Частота среди новорожденных – 1:5.000.

– Трисомия по 18-ой хромосоме (кариотип 47, +18 ); синдром Эдвардса. Частота среди новорожденных – 1:10.000.

Мутационная изменчивость обусловлена возникновением мутаций. Мутации - это внезапные, скачкообразные изменения наследственного материала, которые передаются по наследству. Мутации характеризуются рядом свойств:

1. возникают внезапно, скачкообразно;

2. изменения наследственного материала происходят ненаправленно - мутировать может любой ген, приводя к изменению любого признака;

3. по проявлению в фенотипе могут быть доминантными и рецессивными;

4. передаются по наследству.

По уровню нарушения наследственного материала мутации классифицируются на генные, хромосомные и геномные.

Генные мутации связаны с изменением структуры гена (структуры молекулы ДНК). К нарушению структуры гена могут привести: а) замена, б) вставка, в) выпадение нуклеотида. При замене нуклеотида в молекуле ДНК происходит замена одной аминокислоты в белковой молекуле. Это ведет к синтезу белка с измененными свойствами. Вставка или выпадение нуклеотида ведет к изменению всей последовательности аминокислот в молекуле белка. Генные мутации являются причиной развития многих болезней обмена веществ (фенилкетонурия, серповидноклеточная анемия, альбинизм).

Хромосомные мутации связаны с изменением структуры хромосом. Хромосомные мутации подразделяют на внутрихромосомные и межхромосомные. К внутрихромосомным мутациям относятся:

а) Делеция - выпадение участка хромосомы. Делеция концевого участка хромосомы имеет собственное название – дефишенси. У человека делеция короткого плеча 5-хромосомы - синдром «кошачьего крика».

б) Дупликация - удвоение участка хромосомы.

в) Инверсия - поворот участка хромосомы на 180°.

К межхромосомным мутациям относится транслокация - перенос участка хромосомы на негомологичную хромосому.

ABCDEF - исходная хромосома;

ABEF - делеция;

CDEF - дефишенси;

ABCDDEF - дупликация;

ACBDEF - инверсия;

ABCDEFMN - транслокация.

Геномные мутации связаны с изменением числа хромосом в кариотипе. Геном - это содержание наследственного материала в гаплоидном наборе хромосом. Выделяют:

а) полиплоидия - это кратное гаплоидному набору увеличение числа хромосом (3n, 4n, 6n и т.д.). Полиплоидию подразделяют на автополиплоидию и аллополиплоидию.

Автополиплоидия - кратное увеличение числа наборов хромосом одного вида. Широко встречается у растений и используется в селекции для выведения новых сортов растений, поскольку полиплоиды имеют более крупные размеры, они более стойки к неблагоприятным условиям среды. Полиплоидными являются: рожь (тетраплоидные сорта), ячмень, пшеница, яблоня, груша, хризантемы и многие др. Возникновение полиплоидов связано с нарушением мейоза. Мутаген колхицин, разрушая веретено деления, приводит к полиплоидии.

Аллополиплоидия - увеличение числа наборов хромосом двух разных видов. Аллополиплоидия используется для преодоления бесплодия межвидовых гибридов (капустно-редечный гибрид).

б) гетероплоидия - это изменение числа хромосом некратное гаплоидному (2n+1 - трисомия, 2n-1 - моносомия). Нарушения расхождения хромосом во время мейоза приводит к изменению числа хромосом у организма. Так,

Синдром Дауна – это трисомия по 21 хромосоме;

Синдром Шерешевского-Тернера - моносомия по Х-хромосоме: Х0 у женщины;

Синдром Клайнфельтера - трисомия по половым хромосомам: лишняя Х-хромосома у мужчин - ХХУ).

Гетероплоидии приводят к нарушению хода нормального развития организма, изменениям в его строении и снижению жизнеспособности.